Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(15): 19642-19650, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569110

RESUMO

The fabrication of a soft actuator with a dampened actuation response is presented. This was achieved via the incorporation into an actuating hydrogel of urease-loaded pH-responsive bicontinuous nanospheres (BCNs), whose membrane was able to regulate the permeability and thus conversion of fuel urea into ammonia. The dampened response of these nanoreactors to the enzymatically induced pH change was translated to a pH-responsive soft actuator. In hydrogels composed of a pH-responsive and nonresponsive layer, the transient pH gradient yielded an asymmetric swelling behavior, which induced a bending response. The transient actuation profile could be controlled by varying the external fuel concentrations. Furthermore, we showed that the spatial organization of the BCNs within the actuator had a great influence on the actuation response. Embedding the urease-loaded nanoreactors within the active, pH-responsive layer resulted in a reduced response due to local substrate conversion in comparison to embedding them within the passive layer of the bilayer hydrogel. Finally, we were able to induce transient actuation in a hydrogel comprising two identical active layers by the immobilization of the BCNs within one specific layer. Upon addition of urea, a local pH gradient was generated, which caused accelerated swelling in the BCN layer and transient bending of the device before the pH gradient was attenuated over time.

2.
J Colloid Interface Sci ; 665: 622-633, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552579

RESUMO

Hypothesis Long-acting formulations such as microparticles, injectable depots and implantable devices can realize spatiotemporally controlled delivery of protein drugs to extend their therapeutic in vivo half-lives. To efficiently encapsulate the protein drugs into such drug delivery systems, (sub)micron-sized protein particles are needed. The formation of micronized supraproteins can be induced through the synergistic combination of attractive depletion forces and freezing. The size of the supraproteins can be fine-tuned from submicron to several microns by adjusting the ice crystallization rate through the freeze-quench depth, which is set by the target temperature. Methods Supraprotein micron structures were prepared from protein solutions under various conditions in the presence and absence of nonadsorbing polyethylene glycol. Scanning electron microscopy and dynamic light scattering were employed to determine the sizes of the supraproteins and real-time total internal reflection fluorescent microscopy was used to follow the supraprotein formation during freezing. The protein secondary structure was measured before and after micronization by circular dichroism. A phase diagram of a protein-polyethylene glycol mixture was theoretically predicted to investigate whether the depletion interaction can elucidate the phase behavior. Findings Micronized protein supraparticles could be prepared in a controlled manner by rapid freeze-drying of aqueous mixtures of bovine serum albumin, horseradish peroxidase and lysozyme mixed with polyethylene glycol. Upon freezing, the temperature quench initiates a phase separation process which is reminiscent of spinodal decomposition. This demixing is subsequently arrested during droplet phase separation to form protein-rich microstructures. The final size of the generated protein microparticles is determined by a competition between phase separation and cooling rate, which can be controlled by target temperature. The experimental phase diagram of the aqueous protein-polyethylene glycol dispersion aligns with predictions from depletion theory for charged colloids and nonadsorbing polymers.


Assuntos
Polietilenoglicóis , Polímeros , Congelamento , Polietilenoglicóis/química , Preparações Farmacêuticas , Soroalbumina Bovina/química , Microscopia Eletrônica de Varredura , Água/química , Liofilização
3.
Nat Commun ; 15(1): 1303, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347001

RESUMO

Efficient cytosolic delivery of RNA molecules remains a formidable barrier for RNA therapeutic strategies. Lipid nanoparticles (LNPs) serve as state-of-the-art carriers that can deliver RNA molecules intracellularly, as exemplified by the recent implementation of several vaccines against SARS-CoV-2. Using a bottom-up rational design approach, we assemble LNPs that contain programmable lipid phases encapsulating small interfering RNA (siRNA). A combination of cryogenic transmission electron microscopy, cryogenic electron tomography and small-angle X-ray scattering reveals that we can form inverse hexagonal structures, which are present in a liquid crystalline nature within the LNP core. Comparison with lamellar LNPs reveals that the presence of inverse hexagonal phases enhances the intracellular silencing efficiency over lamellar structures. We then demonstrate that lamellar LNPs exhibit an in situ transition from a lamellar to inverse hexagonal phase upon interaction with anionic membranes, whereas LNPs containing pre-programmed liquid crystalline hexagonal phases bypass this transition for a more efficient one-step delivery mechanism, explaining the increased silencing effect. This rational design of LNPs with defined lipid structures aids in the understanding of the nano-bio interface and adds substantial value for LNP design, optimization and use.


Assuntos
Vacinas contra COVID-19 , Lipossomos , Nanopartículas , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/química , Lipídeos/química , Nanopartículas/química , Transfecção
4.
Proc Natl Acad Sci U S A ; 120(39): e2308238120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37729203

RESUMO

Vibrio cholerae, the causative agent of the disease cholera, is responsible for multiple pandemics. V. cholerae binds to and colonizes the gastrointestinal tract within the human host, as well as various surfaces in the marine environment (e.g., zooplankton) during interepidemic periods. A large adhesin, the Flagellar Regulated Hemagglutinin A (FrhA), enhances binding to erythrocytes and epithelial cells and enhances intestinal colonization. We identified a peptide-binding domain (PBD) within FrhA that mediates hemagglutination, binding to epithelial cells, intestinal colonization, and facilitates biofilm formation. Intriguingly, this domain is also found in the ice-binding protein of the Antarctic bacterium Marinomonas primoryensis, where it mediates binding to diatoms. Peptide inhibitors of the M. primoryensis PBD inhibit V. cholerae binding to human cells as well as to diatoms and inhibit biofilm formation. Moreover, the M. primoryensis PBD inserted into FrhA allows V. cholerae to bind human cells and colonize the intestine and also enhances biofilm formation, demonstrating the interchangeability of the PBD from these bacteria. Importantly, peptide inhibitors of PBD reduce V. cholerae intestinal colonization in infant mice. These studies demonstrate how V. cholerae uses a PBD shared with a diatom-binding Antarctic bacterium to facilitate intestinal colonization in humans and biofilm formation in the environment.


Assuntos
Diatomáceas , Vibrio cholerae , Animais , Humanos , Lactente , Camundongos , Bactérias , Agregação Celular , Trato Gastrointestinal , Intestinos , Vibrio cholerae/genética
5.
Proc Natl Acad Sci U S A ; 120(27): e2220380120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364125

RESUMO

Attaining molecular-level control over solidification processes is a crucial aspect of materials science. To control ice formation, organisms have evolved bewildering arrays of ice-binding proteins (IBPs), but these have poorly understood structure-activity relationships. We propose that reverse engineering using de novo computational protein design can shed light on structure-activity relationships of IBPs. We hypothesized that the model alpha-helical winter flounder antifreeze protein uses an unusual undertwisting of its alpha-helix to align its putative ice-binding threonine residues in exactly the same direction. We test this hypothesis by designing a series of straight three-helix bundles with an ice-binding helix projecting threonines and two supporting helices constraining the twist of the ice-binding helix. Our findings show that ice-recrystallization inhibition by the designed proteins increases with the degree of designed undertwisting, thus validating our hypothesis, and opening up avenues for the computational design of IBPs.


Assuntos
Linguado , Gelo , Animais , Proteínas Anticongelantes/química , Caspase 1
6.
Nat Nanotechnol ; 18(8): 912-921, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37142708

RESUMO

DNA has emerged as an attractive medium for archival data storage due to its durability and high information density. Scalable parallel random access to information is a desirable property of any storage system. For DNA-based storage systems, however, this still needs to be robustly established. Here we report on a thermoconfined polymerase chain reaction, which enables multiplexed, repeated random access to compartmentalized DNA files. The strategy is based on localizing biotin-functionalized oligonucleotides inside thermoresponsive, semipermeable microcapsules. At low temperatures, microcapsules are permeable to enzymes, primers and amplified products, whereas at high temperatures, membrane collapse prevents molecular crosstalk during amplification. Our data show that the platform outperforms non-compartmentalized DNA storage compared with repeated random access and reduces amplification bias tenfold during multiplex polymerase chain reaction. Using fluorescent sorting, we also demonstrate sample pooling and data retrieval by microcapsule barcoding. Therefore, the thermoresponsive microcapsule technology offers a scalable, sequence-agnostic approach for repeated random access to archival DNA files.


Assuntos
DNA , Armazenamento e Recuperação da Informação , Cápsulas , DNA/genética , Oligonucleotídeos , Sequenciamento de Nucleotídeos em Larga Escala
7.
J Am Chem Soc ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995949

RESUMO

We demonstrate the construction of pH-responsive bicontinuous nanospheres (BCNs) with nonlinear transient permeability and catalytic activity. The BCNs were assembled from amphiphilic block copolymers comprising pH-responsive groups and were loaded with the enzymes urease and horseradish peroxidase (HRP). A transient membrane permeability switch was introduced by employing the well-known pH-increasing effect of urease upon conversion of urea to ammonia. As expected, the coencapsulated HRP displayed a transiently regulated catalytic output profile upon addition of urea, with no significant product formation after the pH increase. This transient process displayed a nonlinear "dampening" behavior, induced by a decrease in membrane permeability as a result of significant local ammonia production. Furthermore, the catalytic output of HRP could be modulated by addition of different amounts of urea or by altering the buffer capacity of the system. Finally, this nonlinear dampening effect was not observed in spherical polymersomes, even though the membrane permeability could also be inhibited by addition of urea. The specific BCN morphology therefore allows to optimally control catalytic processes by pH changes in the nanoreactor microenvironment compared to bulk conditions due to its unique permeability profile.

9.
Proc Natl Acad Sci U S A ; 120(2): e2212456120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595705

RESUMO

Antifreeze proteins (AFPs) bind ice to reduce freezing temperatures and arrest ice crystal ripening, making AFPs essential for the survival of many organisms in ice-laden environments and attractive as biocompatible antifreezes in many applications. While their activity was identified over 50 years ago, the physical mechanisms through which they function are still debated because experimental insights at the molecular scale remain elusive. Here, we introduce subzero nanoscopy by the design and incorporation of a freezing stage on a commercial super-resolution setup to resolve the interfacial dynamics of single AFPs with ice crystal surfaces. Using this method, we demonstrate irreversible binding and immobilization (i.e., pinning) of individual proteins to the ice/water interface. Surprisingly, pinning is lost and adsorption becomes reversible when freezing point depression activity, but not ice recrystallization inhibition, is eliminated by a single mutation in the ice-binding site of the AFP. Our results provide direct experimental evidence for the adsorption-inhibition paradigm, pivotal to all theoretical descriptions of freezing point depression activity, but also reveal that reversible binding to ice must be accounted for in an all-inclusive model for AFP activity. These mechanistic insights into the relation between interfacial interactions and activity further our understanding and may serve as leading principles in the future design of highly potent, biocompatible antifreezes with tunable affinity.


Assuntos
Proteínas Anticongelantes , alfa-Fetoproteínas , Cristalização , Proteínas Anticongelantes/química , Congelamento , Crioprotetores
10.
Macromolecules ; 56(1): 226-233, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36644553

RESUMO

Enabling complexation of weak polyelectrolytes, in the presence of a programmable pH-modulation, offers a means to achieve temporal control over polyelectrolyte coassembly. Here, by mixing oppositely charged poly(allylamine hydrochloride) and poly(sodium methacrylate) in a (bi)sulfite buffer, nanoscopic complex coacervates are formed. Addition of formaldehyde initiates the formaldehyde-sulfite clock reaction, affecting the polyelectrolyte assembly in two ways. First, the abrupt pH increase from the reaction changes the charge density of the polyelectrolytes and thus the ratio of cationic and anionic species. Simultaneously, reactions between the polyamine and formaldehyde lead to chemical modifications on the polymer. Interestingly, core-shell polymeric nanoparticles are produced, which remain colloidally stable for months. Contrastingly, in the same system, in the absence of the clock reaction, aggregation and phase separation occur within minutes to days after mixing. Introducing an acid-producing reaction enables further temporal control over the coassembly, generating transient nanoparticles with nanoscopic dimensions and an adjustable lifetime of tens of minutes.

11.
Soft Matter ; 18(39): 7569-7578, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165127

RESUMO

Colloid supported lipid bilayers (CSLBs) are highly appealing building blocks for functional colloids. In this contribution, we critically evaluate the impact on lipid ordering and CSLB fluidity of inserted additives. We focus on poly(ethylene glycol) (PEG) bearing lipids, which are commonly introduced to promote colloidal stability. We investigate whether their effect on the CSLB is related to the incorporated amount and chemical nature of the lipid anchor. To this end, CSLBs were prepared from lipids with a low or high melting temperature (Tm), DOPC, and DPPC, respectively. Samples were supplemented with either 0, 5 or 10 mol% of either a low or high Tm PEGylated lipid, DOPE-PEG2000 or DSPE-PEG2000, respectively. Lipid ordering was probed via differential scanning calorimetry and fluidity by fluorescence recovery after photobleaching. We find that up to 5 mol% of either PEGylated lipids could be incorporated into both membranes without any pronounced effects. However, the fluorescence recovery of the liquid-like DOPC membrane was markedly decelerated upon incorporating 10 mol% of either PEGylated lipids, whilst insertion of the anchoring lipids (DOPE and DSPE without PEG2000) had no detectable impact. Therefore, we conclude that the amount of incorporated PEG stabilizer, not the chemical nature of the lipid anchor, should be tuned carefully to achieve sufficient colloidal stability without compromising the membrane dynamics. These findings offer guidance for the experimental design of studies using CSLBs, such as those focusing on the consequences of intra- and inter-particle inhomogeneities for multivalent binding and the impact of additive mobility on superselectivity.


Assuntos
Bicamadas Lipídicas , Polietilenoglicóis , Coloides , Bicamadas Lipídicas/química , Polietilenoglicóis/química
12.
Macromolecules ; 55(14): 6220-6230, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35910311

RESUMO

Precise control over the folding pathways of polypeptides using a combination of noncovalent and covalent interactions has evolved into a wide range of functional proteins with a perfectly defined 3D conformation. Inspired hereby, we develop a series of amphiphilic copolymers designed to form compact, stable, and structured single-chain polymeric nanoparticles (SCPNs) of defined size, even in competitive conditions. The SCPNs are formed through a combination of noncovalent interactions (hydrophobic and hydrogen-bonding interactions) and covalent intramolecular cross-linking using a light-induced [2 + 2] cycloaddition. By comparing different self-assembly pathways of the nanoparticles, we show that, like for proteins in nature, the order of events matters. When covalent cross-links are formed prior to the folding via hydrophobic and supramolecular interactions, larger particles with less structured interiors are formed. In contrast, when the copolymers first fold via hydrophobic and hydrogen-bonding interactions into compact conformations, followed by covalent cross-links, good control over the size of the SCPNs and microstructure of the hydrophobic interior is achieved. Such a structured SCPN can stabilize the solvatochromic dye benzene-1,3,5-tricarboxamide-Nile Red via molecular recognition for short periods of time in complex media, while showing slow exchange dynamics with the surrounding complex media at longer time scales. The SCPNs show good biocompatibility with cells and can carry cargo into the lysosomal compartments of the cells. Our study highlights the importance of control over the folding pathway in the design of stable SCPNs, which is an important step forward in their application as noncovalent drug or catalyst carriers in biological settings.

13.
Angew Chem Int Ed Engl ; 61(39): e202206780, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35766724

RESUMO

We report a switchable, templated polymerization system where the strength of the templating effect can be modulated by solution pH and/or ionic strength. The responsiveness to these cues is incorporated through a dendritic polyamidoamine-based template of which the charge density depends on pH. The dendrimers act as a template for the polymerization of an oppositely charged monomer, namely sodium styrene sulfonate. We show that the rate of polymerization and maximum achievable monomer conversion are directly related to the charge density of the template, and hence the environmental pH. The polymerization could effectively be switched "ON" and "OFF" on demand, by cycling between acidic and alkaline reaction environments. These findings break ground for a novel concept, namely harnessing co-assembly of a template and growing polymer chains with tunable association strength to create and control coupled polymerization and self-assembly pathways of (charged) macromolecular building blocks.

14.
ACS Appl Mater Interfaces ; 14(15): 17042-17054, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35403421

RESUMO

Supramolecular materials provide unique opportunities to mimic both the structure and mechanics of the biopolymer networks that compose the extracellular matrix. However, strategies to modify their filamentous structures in space and time in 3D cell culture to study cell behavior as encountered in development and disease are lacking. We herein disclose a multicomponent squaramide-based supramolecular material whose mechanics and bioactivity can be controlled by light through co-assembly of a 1,2-dithiolane (DT) monomer that forms disulfide cross-links. Remarkably, increases in storage modulus from ∼200 Pa to >10 kPa after stepwise photo-cross-linking can be realized without an initiator while retaining colorlessness and clarity. Moreover, viscoelasticity and plasticity of the supramolecular networks decrease upon photo-irradiation, reducing cellular protrusion formation and motility when performed at the onset of cell culture. When applied during 3D cell culture, force-mediated manipulation is impeded and cells move primarily along earlier formed channels in the materials. Additionally, we show photopatterning of peptide cues in 3D using either a photomask or direct laser writing. We demonstrate that these squaramide-based filamentous materials can be applied to the development of synthetic and biomimetic 3D in vitro cell and disease models, where their secondary cross-linking enables mechanical heterogeneity and shaping at multiple length scales.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Materiais Biocompatíveis/análise , Materiais Biocompatíveis/farmacologia , Técnicas de Cultura de Células , Sinais (Psicologia) , Matriz Extracelular/química , Hidrogéis/química
15.
Biomacromolecules ; 23(2): 520-529, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35045706

RESUMO

While most native ice-binding proteins are rigid, artificial (macro)molecular ice-binders are usually flexible. Realizing a regular array with precisely positioned ice-binding motifs on synthetic proteins, (macro)molecular ice-binders are thus challenging. Here, we exploit the predictable assembly of cyclic peptides into nanotubes as a starting point to prepare large, rigid ice-binders bearing an ice-binding site that is found in hyperactive ice-binding proteins in insects. First, we designed, synthesized, and purified cyclic octapeptide Lys2CP8 bearing a TaT motif to promote ice binding and investigated their solution assembly and activity using circular dichroism (CD) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, light scattering (LS), cryogenic transmission electron microscopy (cryo-TEM), and ice recrystallization inhibition (IRI) assays. The cyclic peptide Lys2CP8 was synthesized in good yield using Fmoc chemistry and purified by reversed-phase HPLC. Upon dissolution in aqueous solutions, Lys2CP8 was observed to assemble in a pH- and concentration-dependent manner into objects with nanoscopic dimensions. LS revealed the presence of small and large aggregates at pH 3 and 11, held together through a network of intermolecular antiparallel ß-sheets as determined by FTIR and CD spectroscopy. Cryo-TEM revealed the presence of one-dimensional objects at pH 3 and 11. These are mostly well-dispersed at pH 3 but appear to bundle at pH 11. Interestingly, the pH-dependent self-assembly behavior translates into a marked pH dependence of IRI activity. Lys2CP8 is IRI-active at pH 3 while inactive at pH 11 hypothetically because the ice-binding sites are inaccessible at pH 11 due to bundling.


Assuntos
Gelo , Nanotubos , Dicroísmo Circular , Microscopia Eletrônica de Transmissão , Peptídeos Cíclicos , Espectroscopia de Infravermelho com Transformada de Fourier
16.
J Colloid Interface Sci ; 608(Pt 2): 1297-1307, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34739992

RESUMO

HYPOTHESIS: In the quest for large but well-controlled supramolecular structures, the discotic benzene-1,3,5-tricarboxamide (BTA) has received quite some attention, because it can form hydrogen-bonded stacks that can be regarded as supramolecular polymers of which the single BTA molecule is the monomer. In this report, we consider a more complex BTA-based supramolecular polymer, namely one that is built up from supramolecular 'monomers'. EXPERIMENTS: We design a tris-ligand L3 consisting of a BTA core carrying three dipicolinic acid (DPA) groups. L3 itself is too small to form polymers, but in the presence of appropriate metal ions, each L3 can form three coordination bonds and so form (L3)n clusters that are large enough to stack successfully: at an appropriate metal dose, long and stable filaments with a cross-sectional diameter of 12 nm appear. We monitor the growth process by UV-vis spectroscopy and light scattering, and use small angle X-ray scattering (SAXS), TEM as well as molecular simulation to confirm the filamentous structure of the fibers and determine their dimensions. FINDINGS: The formation and structure of the fiber are very similar for various transition metal ions, which enables introducing different functionalities, e.g., magnetic relaxivity, by proper choice of the metal ions. Hence, we obtain a doubly supramolecular polymer, connected axially by hydrogen bonds, and radially by coordination bonds. Not only does this realize a higher level of complexity, but it also allows to easily introduce and vary metal-derived functionalities.


Assuntos
Benzamidas , Benzeno , Espalhamento a Baixo Ângulo , Difração de Raios X
17.
Cell Rep ; 37(7): 110002, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34788627

RESUMO

Infections typically begin with pathogens adhering to host cells. For bacteria, this adhesion can occur through specific ligand-binding domains. We identify a 20-kDa peptide-binding domain (PBD) in a 1.5-MDa RTX adhesin of a Gram-negative marine bacterium that colonizes diatoms. The crystal structure of this Ca2+-dependent PBD suggests that it may bind the C termini of host cell-surface proteins. A systematic peptide library analysis reveals an optimal tripeptide sequence with 30-nM affinity for the PBD, and X-ray crystallography details its peptide-protein interactions. Binding of the PBD to the diatom partner of the bacteria can be inhibited or competed away by the peptide, providing a molecular basis for inhibiting bacterium-host interactions. We further show that this PBD is found in other bacteria, including human pathogens such as Vibrio cholerae and Aeromonas veronii. Here, we produce the PBD ortholog from A. veronii and demonstrate, using the same peptide inhibitor, how pathogens may be prevented from adhering to their hosts.


Assuntos
Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/ultraestrutura , Interações entre Hospedeiro e Microrganismos/fisiologia , Sequência de Aminoácidos/genética , Aderência Bacteriana/genética , Aderência Bacteriana/fisiologia , Sítios de Ligação/genética , Biofilmes , Cristalografia por Raios X/métodos , Escherichia coli , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos/genética
18.
Nano Lett ; 21(22): 9509-9516, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34757759

RESUMO

Super-resolution microscopy via PAINT has been widely adopted in life sciences to interrogate the nanoscale architecture of many cellular structures. However, obtaining quantitative information in fixed cellular samples remains challenging because control of labeling stoichiometry is hampered in current approaches due to click-chemistry and additional targeting probes. To overcome these challenges, we have identified a small, PDZ-based, peptide-protein interaction pair that is genetically encodable and compatible with super-resolution imaging upon cellular fixation without additional labeling. Stoichiometric labeling control by genetic incorporation of this probe into the cellular vimentin network and mitochondria resulted in super-resolved 3D reconstructions with high specificity and spatial resolution. Further characterization reveals that this peptide-protein interaction is compatible with quantitative PAINT and that its binding kinetics remains unaltered upon fixation. Finally, by fusion of our probe to nanobodies against conventional expression markers, we show that this approach provides a versatile addition to the super-resolution toolbox.


Assuntos
DNA , Anticorpos de Domínio Único , Química Click , DNA/química , Microscopia de Fluorescência/métodos , Peptídeos/genética
19.
Polym Chem ; 12(19): 2891-2903, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-34046093

RESUMO

Industrial and household products, such as paints, inks and cosmetics usually consist of mixtures of macromolecules that are disperse in composition, in size and in monomer sequence. Identifying structure-function relationships for these systems is complicated, as particular macromolecular components cannot be investigated individually. For this study, we have addressed this issue, and have synthesized a series of five sequence-defined polyurethanes (PUs): one neutral-hydrophobic, one single-charged hydrophilic, one single-charged hydrophobic and two double-charged amphiphilic PUs (one symmetric and one asymmetric). These novel precision PUs - that were prepared by using stepwise coupling-deprotection synthetic protocols - have a defined composition, size and monomer sequence, where the chosen sequences were inspired by those that are abundantly formed in the production of industrial waterborne PU dispersions. By performing dynamic light scattering experiments (DLS), self-consistent field (SCF) computations and cryogenic transmission electron microscopy (cryo-TEM), we have elucidated the behavior in aqueous solution of the individual precision PUs, as well as of binary and ternary mixtures of the PU sequences. The double-charged PU sequences ('hosts') were sufficiently amphiphilic to yield single-component micellar solutions, whereas the two more hydrophobic sequences did not micellize on their own, and gave precipitates or ill-defined larger aggregates. Both the neutral-hydrophobic PU and the hydrophilic single-charged PU were successfully incorporated in the host micelles as guests, respectively increasing and reducing the micelle radius upon incorporation. SCF computations indicated that double-charged symmetric PUs stretch whilst double-charged asymmetric PUs are expelled from the core to accommodate hydrophobic PU guests within the micelles. For the ternary mixture of the double-charged symmetric and asymmetric hosts and the neutral-hydrophobic guest we have found an improved colloidal stability, as compared to those for binary mixtures of either host and hydrophobic guest. In another ternary mixture of precision PUs, with all three components not capable of forming micelles on their own, we see that the ensemble of molecules produces stable micellar solutions. Taken together, we find that the interplay between PU-molecules in aqueous dispersions promotes the formation of stable micellar hydrocolloids.

20.
Adv Mater ; 33(27): e2008517, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34048090

RESUMO

Worldwide, over 26 million patients suffer from heart failure (HF). One strategy aspiring to prevent or even to reverse HF is based on the transplantation of cardiac tissue-engineered (cTE) constructs. These patient-specific constructs aim to closely resemble the native myocardium and, upon implantation on the diseased tissue, support and restore cardiac function, thereby preventing the development of HF. However, cTE constructs off-the-shelf availability in the clinical arena critically depends on the development of efficient preservation methodologies. Short- and long-term preservation of cTE constructs would enable transportation and direct availability. Herein, currently available methods, from normothermic- to hypothermic- to cryopreservation, for the preservation of cardiomyocytes, whole-heart, and regenerative materials are reviewed. A theoretical foundation and recommendations for future research on developing cTE construct specific preservation methods are provided. Current research suggests that vitrification can be a promising procedure to ensure long-term cryopreservation of cTE constructs, despite the need of high doses of cytotoxic cryoprotective agents. Instead, short-term cTE construct preservation can be achieved at normothermic or hypothermic temperatures by administration of protective additives. With further tuning of these promising methods, it is anticipated that cTE construct therapy can be brought one step closer to the patient.


Assuntos
Criopreservação , Engenharia Tecidual , Animais , Coração , Miocárdio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...